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Abstract 
This paper presents a physically-based, visually-realistic interactive cloud simulation.  Clouds in our system are 
modeled using partial differential equations describing fluid motion, thermodynamic processes, buoyant forces, 
and water phase transitions.  We also simulate the interaction of clouds with light, including self-shadowing and 
light scattering. 

We implement both simulations – dynamic and radiometric – entirely on programmable floating-point graphics 
hardware.  We use “flat 3D textures” – 3D data laid out as slices tiled in a 2D texture – to implement 3D 
simulations on the GPU.  This has scalability advantages over the use of traditional 3D textures.  We exploit the 
relatively slow evolution of clouds in calm skies to enable interactive visualization of the simulation.  The work 
required to simulate a single time step is automatically spread over many frames while the user views the results of 
the previous time step.  This technique enables the incorporation of our simulation into real applications without 
sacrificing interactivity. 
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1  Introduction 
Clouds are a ubiquitous feature of our world.  They provide 
a fascinating dynamic backdrop to the outdoors, creating an 
endless array of formations and patterns.  They are also an 
integral factor in the behavior of Earth’s weather systems.  
The combination of physical and visual complexity has 
made them an important area of study for meteorologists, 
physicists, and even artists. 

Clouds can form in many ways.  Convective clouds form 
when moist air is warmed and becomes buoyant.  The air 
rises, carrying water vapor with it, expanding and cooling 
as it goes.  As the temperature and pressure of the air 
decrease, its saturation point – the equilibrium level of 
evaporation and condensation – is reduced.  When the 
water vapor content of the rising air becomes greater than 
its saturation point, condensation occurs, which yields the 
microscopic condensed cloud water particles that we see as 
clouds in the sky.  Condensation increases the drag on the 
air, causing it to slow its ascent, which creates a natural 
limit on the vertical extent of a cloud layer.  Stratus clouds 
usually form when masses of warm and cool air mix due to 
radiative cooling or lifting of the air over terrain 
(Orographic lifting).  An example of the formation of 
stratus clouds by mixing is the fog that often rolls into the 
city of San Francisco. 

We have developed a cloud dynamics simulation based 
on partial differential equations that model fluid flow, 
thermodynamics, and water condensation and evaporation, 
as well as various forces and other factors that influence 
these equations.  We implement the discrete form of these 
equations using the programmable floating-point fragment 
processors in the latest graphics hardware.  All computation 
and rendering is performed on the GPU; the CPU provides 
only high-level control.  We describe two useful 
optimizations for this hardware: a representation of volume 
data in two-dimensional textures, and an efficient packing 
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Figure 1: Simulated cumulus clouds roll above a valley. 
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of scalar fields to best exploit the vector operations of the 
fragment processor. 

In order to incorporate dynamically simulated 3D clouds 
into existing 3D applications, the per-frame simulation cost 
must be small enough that it does not interfere with the 
application.  We have implemented a method for 
amortizing the simulation cost over multiple frames 
allowing the application to budget time for the simulation 
each frame.  This technique greatly improves interactivity, 
allowing us to view the results of a simulation at 60 frames 
per second or higher while the simulation progresses at 
several iterations per second. 

For clouds to look realistic, we must also simulate their 
interaction with light.  We use an illumination 
approximation that incorporates self-shadowing and 
multiple forward light scattering, and implement it on the 
GPU using dynamic 3D texturing.  We have integrated all 
of the techniques described above in an interactive flight 
application [Harris and Lastra 2001] that amortizes the high 
cost of slice-based volume cloud rendering by using 
dynamically-generated impostors. 

Others in computer graphics have researched methods of 
simulating clouds.  [Kajiya and Von Herzen 1984] used a 
simple method based on PDEs to generate cloud data sets 
for their ray tracing algorithm.  [Dobashi, et al. 2000] used 
a simple cellular automata model of cloud formation to 
animate clouds offline.  [Miyazaki, et al. 2001] extended 
this to use a coupled map lattice model based on 
atmospheric fluid dynamics.  [Overby, et al. 2002] 
described another physical model that, like ours, is based on 
the stable fluid simulation of [Stam 1999].  Of these, our 

work is most similar to the work by Kajiya and Von Herzen 
and Overby et al.  However, there are several differences. 

Both Overby et al. and Kajiya and Von Herzen use a 
buoyancy force that is proportional to potential 
temperature.  Our model also accounts for the negative 
buoyancy effects of condensed water mass and the positive 
buoyancy effects of water vapor [Houze 1993].  This 
increases the realism of air currents.  Overby et al. also 
assume that saturation is directly proportional to pressure, 
but they provide no information about how they model 
pressure in their system.  Our system uses a well-known 
exponential relationship between saturation and 
temperature, and does not explicitly model pressure.  In 
addition, they introduce two effects that are physically 
unrealistic.  One is a computation meant to account for the 
expansion of rising air.  The other is an artificial 
momentum-conservation computation.  These computations 
are superfluous since the Navier-Stokes equations, which 
they solve, already account for these phenomena.  Overby 
et al. were able to achieve rates of a few frames a second.  
However we are able to simulate on larger volumes at 
interactive rates due to the speed of the graphics hardware.  
Finally, none of the previous simulations have been 
integrated into truly interactive, high frame rate 
applications. 

2  Cloud Dynamics 
The dynamics of cloud formation, growth, motion and 
dissipation are complex.  In the development of a cloud 
simulation, it is important to understand these dynamics so 
that good approximations can be chosen that allow efficient 
implementation without sacrificing realism.  In this section, 
we describe the equations of cloud dynamics that make up 
our model.  For much more detailed information and 
analysis, we refer the reader to [Andrews 2000;Houze 
1993;Rogers and Yau 1989].   

The basic quantities necessary to simulate clouds are 
velocity, u=(u, v, w),  air pressure, p, temperature T, water 
vapor, qv, and condensed cloud water, qc.  These water 
content variables are mixing ratios – the mass of vapor or 
liquid water per unit mass of air.  It is the condensed water, 
qc, that makes clouds visible, so this is the desired output of 
our simulation.  We require a system of equations that 
models cloud dynamics in terms of these variables.  These 
equations are the equations of motion, the thermodynamic 
equation, and the water continuity equations. 

2.1 Equations of motion 
The motion of air in the atmosphere can be described by the 
incompressible Euler equations of fluid motion: 

 
1 ˆ( ) p

t ρ

∂
= − ⋅∇ − ∇ + +

∂

u
u u Bk f  (1) 

 0∇ ⋅ =u  (2) 

where ρ is the density of the fluid.  Equation (1) is a 
statement of the conservation of momentum in which the 
first term on the right expresses how the velocity field 
transports, or advects itself, the second term is an 

Figure 2: A sequence of stills (top-to-bottom, left-to-right) 
from our 2D cloud simulation, running on a 128x128 grid at 
greater than 30 frames per second. 
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acceleration caused by the pressure gradient, B is buoyant 
acceleration, and f is acceleration due to other forces.  
Equation (2) is known as the continuity equation, because it 
enforces that the velocity field is divergence-free, and 
conserves mass.  In addition to the advection of velocity, 
temperature and water (in both phases) are also advected by 
the flow, as will be described below. 

2.2 Parcels and Potential Temperature 
A conceptual tool used in the study of atmospheric 
dynamics is the air parcel – a small mass of air that can be 
thought of as “traceable” relative to its surroundings.  The 
parcel approximation is useful in developing the 
mathematics that our simulation requires. 

When a parcel changes altitude without a change in heat, 
it is said to move adiabatically.  Since air pressure (and 
therefore temperature) varies with altitude, the parcel’s 
pressure and temperature will change.  We can account for 
adiabatic changes of temperature and pressure with the 
concept of potential temperature.  The potential 
temperature, θ, of a parcel of air can be defined as the final 
temperature that a parcel would have if it were moved 
adiabatically from pressure p and temperature T to pressure 
p̂  (standard pressure at sea level, ~100 kPa):  
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Π is called the Exner function.  Rd is the gas constant for 
dry air (287 J kg-1 K-1), and cp and cv are the specific heat 
capacities of dry air at constant pressure and volume, 
respectively.  Potential temperature is convenient to use in 
atmospheric modeling because it is constant under adiabatic 
changes of altitude, while absolute temperature must be 
recalculated at each altitude. 

2.3 Buoyant Force 
Changes in the density of a parcel of air relative to its 
surroundings result in a buoyant force on the parcel.  If the 
parcel's density is less than the surrounding air, this force 
will be upward; if the density is greater, the buoyant force 
will be downward.  The density of an ideal gas is related to 
its temperature and pressure.  A common simplification in 
cloud modeling is to regard the effects of local pressure 
changes on density as negligible, so we can represent this 
buoyant force per unit mass with the following expression 
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B , (4) 

where g is the acceleration due to gravity and qH is the mass 
mixing ratio of hydrometeors, which includes all forms of 
water other than water vapor.  In the case of the simple two-
state bulk water continuity model to be given in Section 
2.6, this is just the mixing ratio of liquid water, qc. 

(1 0.61 )v vqθ θ≈ + is the virtual potential temperature, 
which accounts for the effects of water vapor on air 

temperature, and is defined as the potential temperature that 
dry air would have if its pressure and density were equal to 
those of a given sample of moist air.  θv0 is the reference 
potential temperature, usually between 290 and 300 K.  
While the difference between virtual and potential 
temperature may seem negligible, it is possible to 
noticeably increase buoyant force by increasing only the 
water vapor content of the air. 

2.4 Environmental Lapse Rate   
The Earth’s atmosphere is in static equilibrium. The 
hydrostatic balance of the opposing forces of gravity and 
air pressure results in an exponential decrease of pressure 
with altitude: 

 

/( )

0
0

( ) 1
dg R

z
p z p

T

Γ
Γ

= −
 
 
 

 (5) 

Here, z is altitude, and p0 and T0 are the pressure and 
temperature at the base altitude.  Typically, p0 = 100 kPa 
and T0 is in the range 280–310 K.  The lapse rate, Γ, is the 
rate of decrease of temperature with altitude.  In the Earth's 
atmosphere, temperature decreases approximately linearly 
with height in the troposphere (sea level to about 15 km, the 
tropopause).  Therefore, we can assume that Γ is a constant.  
A typical value for Γ is around 10 K km-1.  We can use (3) 
and (5) to compute the environmental temperature and 
pressure of the atmosphere in the absence of disturbances, 
and as we describe below, compare them to the local 
temperature and pressure to compute the saturation point of 
the air. 

2.5 Saturation Mixing Ratio 
Cloud water continuously changes phases from liquid to 
vapor and vice versa.  When the rates of condensation and 
evaporation are equal, air is said to be saturated.  The water 
vapor mixing ratio at saturation is called the saturation 
mixing ratio, denoted by qvs(T,p).  When the water vapor 
mixing ratio exceeds the saturation mixing ratio, the air is 
supersaturated.  Rather than remain in this state, 
condensation may occur, leading to cloud formation.  A 
useful empirical approximation for saturation mixing ratio 
is  

 
380.16 17.67

( , ) exp
243.5
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q T p
p T

=
+

  
 

, (6) 

with T in Celsius and p in Pa.  This is based on the formula 
for a curve fit to data in standard meteorological tables to 
within 0.1% over the range -30ºC ≤ T ≤ 30ºC [Rogers and 
Yau 1989]. 

2.6 Water Continuity 
We use a simple Bulk Water Continuity model as described 
in [Houze 1993] to describe the evolution of water vapor 
mixing ratio qv and condensed cloud water mixing ratio, qc.  
Cloud water is water that has condensed but whose droplets 
have not grown large enough to precipitate.  The water 
mixing ratios at a given location are affected both by 
advection and by phase changes (from gas to liquid and 
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vice versa).  In this model, the rates of evaporation and 
condensation must be balanced, resulting in the water 
continuity equation, 

 ( ) ( )v c
v c

q q
q q C

t t

∂ ∂
+ ⋅ ∇ = − + ⋅ ∇ = −

∂ ∂

  
 

u u , (7) 

where C is the rate of condensation. 

2.7 Thermodynamic Equation 
While adiabatic motion is a valid approximation for air that 
is not saturated with water vapor, the potential temperature 
of saturated air cannot be assumed to be constant.  If 
expansion of a moist parcel continues beyond the saturation 
point, water vapor condenses and releases latent heat, 
warming the parcel.  If latent heating and cooling due to 
condensation and evaporation are the only non-adiabatic 
heat sources, then the first law of thermodynamics results in  

 ( ) ( )v
v

p

qL
q

t c t

θ
θ

∂∂ −
+ ⋅∇ = + ⋅ ∇

∂ Π ∂

 
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u u , (8) 

where L is the latent heat of vaporization of water, 2.501 J 
kg-1 at 0° C (Changes by less than 10% within ±40°).  
Notice from  (7) that we can substitute –C for the quantity 
in parentheses above.  This equation states that the change 
in local potential temperature is determined both by 
advection  of potential temperature in and out of the local 
region, and by the latent heat of local phase changes. 

2.8 Vorticity Confinement 
Like the smoke that was the simulation goal of [Fedkiw, et 
al. 2001], convective clouds typically contain rotational 
flows at a variety of scales.   As they explained, numerical 
dissipation caused by simulation on a coarse grid damps out 
these interesting features.  Therefore like Fedkiw et al., we 
use vorticity confinement to restore these fine-scale 
motions.  [Overby, et al. 2002] also used vorticity 
confinement in their cloud simulation. 

Vorticity confinement works by first computing the 
vorticity ω = ∇ × u , from which a normalized vorticity 
vector field   

 ,   where   N
η

η ω
η

= = ∇  (9) 

is computed.  The vectors N point from areas of lower 
vorticity to areas of higher vorticity.  From these vectors we 
can compute a force that can be used to replace dissipated 
vorticity back in: 

 ( )vc h Nε ω= ×f . (10) 

Here ε is a user-controlled scale parameter and h is the grid 
scale. 

3  Solving the Equations 
From the description above, we see that we must solve the 
equations of fluid flow, (1) and (2), the water continuity 
equation, (7), and the thermodynamic equation, (8). 

3.1 Fluid Flow 
Our cloud model is based on the equations of fluid flow, so 
our simulator is built on top of a standard fluid simulator 
much like the ones described by [Fedkiw, et al. 2001;Stam 
1999].  We solve the equations of motion using the stable 
two step technique described in those papers.   

In the first step, we use the semi-Lagrangian advection 
technique that Stam described to compute an intermediate 
velocity field u′, and add to it the buoyancy force, (4), and 
vorticity confinement force, (10).  This step solves equation 
(1) without the pressure term.  In the second step, the 
intermediate field u′ is made incompressible (so that it 
satisfies both (1) and (2)) using a projection method based 
on the Helmholtz-Hodge decomposition [Chorin and 
Marsden 1993].  The projection is performed by solving for 
the pressure using the  Poisson equation 

 2 1
p

tδ
′∇ = ∇⋅u  (11) 

with pure Neumann boundary conditions ( / 0p n∂ ∂ = ), 
and then subtracting the pressure gradient from u′: 

 t pδ′= − ∇u u . (12) 

Using the advection technique as for velocity, we also 
advect the temperature, θ, and water variables, qv and qc.  
During advection, we apply different boundary conditions 
for each of the variables.  For the velocity, we use the no-
slip condition (u = 0) on the bottom boundary, and free-slip 
condition ( / 0n∂ ∂ =u ) on the top.  At the sides, we set the 
vertical velocity to zero, and the horizontal velocities to the 
user-defined horizontal wind speeds.  We set the top and 
side temperature boundaries to the user-defined ambient 
temperature.  We use periodic side boundaries for qv to 
simulate water vapor being blown in from outside our 
simulation domain, and we set all qc boundaries and the top 
qv boundary to zero.  Finally, we specify input fields at the 
bottom boundary for both temperature and water vapor.  
These fields are randomly perturbed, user-specified 
constant values, and are the source of the temperature and 
water that cause clouds to form.  

3.2 Water Continuity 
The solution of the water continuity equations (7) is 
straightforward.  The equations state that the changes in qv 
and qc are governed by advection of the quantities as well 
as by the amount of condensation and evaporation.  We 
solve them in two steps.  First, we advect each using the 
semi-Lagrangian technique mentioned before, resulting in 
intermediate values q′v and q′c.  Then, at each cell, we 
compute the new mixing ratios as follows:  

 

min( , )

,

v vs v c

v v v

c c v

q C q q q

q q q

q q q

′ ′ ′∆ = −∆ = −

′ ′= + ∆

′ ′= − ∆

 (13) 

where ∆C is the amount of condensation over the time step, 
and qvs is computed using equation (6) as described in 
Section 2.5.  We compute T using equation (3) with the 



 
 

Harris, Baxter, Scheuermann, and Lastra / Simulation of Cloud Dynamics on Graphics Hardware 

©The Eurographics Association 2003. 

current potential temperature θ, and the local environmental 
pressure computed with equation (5). 

3.3 Thermodynamics 
The left-hand side of the thermodynamic equation, (8), 
shows that like the other quantities, potential temperature is 
advected by the velocity field, so we compute an 
intermediate value, θ ′  via the semi-Lagrangian advection 
scheme.  As mentioned before, we can substitute –C for the 
quantity in parentheses on the right-hand side of the 
thermodynamic equation.  This means that the temperature 
increases by an amount proportional to the amount of 
condensation, and we can update it as follows: 

 
p

L
C

c
θ θ ′= + ∆

Π
 (14) 

4  Implementation 
We solve the equations presented in the previous section on 
a grid of voxels.  We use a staggered grid discretization of 
the velocity and pressure equations as in [Fedkiw, et al. 
2001;Foster and Metaxas 1997;Griebel, et al. 1998].  This 
means that pressure, temperature, and water content are 
defined at the center of voxels while velocity is defined on 
the faces of the voxels.  Not only does this method reduce 
numerical dissipation as mentioned by Fedkiw et al., but as 
Griebel et al. explain, it prevents possible pressure 
oscillations that can arise with collocated grids (in which all 
variables are defined at cell centers).  Our experiments with 
collocated grids have indeed shown some undesirable 
pressure oscillations when buoyant forces are applied.  
Section 5.2 describes our implementation of voxel grids 
using textures.  

Overall, our method for solving the equations of cloud 
dynamics at each discrete time step is as follows. 

1. Advect θ, qv, and qc and velocity, u. 
2. Compute vorticity confinement force, fvc. 
3. Compute buoyant force, B. 

4. Compute ( ) .advected vc tδ′ = + + ⋅u u B f  

5. Update qv and qc according to (13). 
6. Update θ according to (14). 
7. Compute the divergence .′∇ ⋅u  
8. Solve the Poisson-pressure equation, (11). 
9. Compute p′= − ∇u u . 

Our implementation of steps 1, 2, 7, and 9 follows 
[Fedkiw, et al. 2001] nearly exactly.  We refer the reader to 
the appendix of that paper for the discrete form of the 
equations.  Step 3 can be implemented directly from 
equation (4).  However we find that providing the user with 
a scale factor applied to qH  provides useful control over the 
buoyancy of clouds.  In our implementation, steps 5 and 6 
are performed in a single fragment program (See Section 
5.1), since we store the water and temperature variables in a 
single texture.  We solve the remaining step, the Poisson-
pressure equation, using a standard iterative relaxation 
solver applied to equation (11). 

[Fedkiw, et al. 2001] use the conjugate gradient method 
with an incomplete Choleski preconditioner to solve the 
Poisson-pressure equation.  While this is a straightforward 
solver to implement and run on a CPU, our implementation 
uses fragment programs that run on the GPU.  
Implementation of conjugate gradient on the GPU is 
feasible ([Bolz, et al. 2003;Krüger and Westermann 2003]), 
but many passes are required just to compute the large 
vector inner products required by the algorithm (O(log2N) 
passes, where N is the grid resolution).  Because of this, we 
chose to use a simple solver such as Jacobi or Red-Black 
Gauss Seidel relaxation [Golub and Van Loan 1996].  
These solvers can be implemented to run in one and two 
render passes, respectively, using only a few lines of Cg 
code.  Therefore we can run more iterations in a given 
amount of time than with a more complex method, which 
helps make up for the slower convergence of our chosen 
solvers.  Section 5.3 discusses the efficient implementation 
of these solvers. 

5  Hardware Implementation 
As mentioned before, we perform all of the numerical 
computation for our cloud simulator in the programmable, 
floating point fragment unit of a graphics processor.  State 
fields, such as p and u, are stored in textures.  For 
efficiency, we store θ, qv, and qc in different channels of the 
same texture.  Computation is performed much as in 
[Harris, et al. 2002].  The difference is that newer GPUs 
provide much more power in terms of precision, flexibility 
and instruction count, allowing us to tackle much more 
complex simulations, such as clouds.  State textures are 
updated using a render pass that draws a quadrilateral fit to 
the viewport.  We implement computations using fragment 
programs written in the Cg shading language [Mark, et al. 
2003].  The fragment programs implement the steps 
described in the previous section using texturing operations 
to read data from the grids.   

At the end of a render pass, the state texture is updated.  
This update can be performed via a copy from the frame 
buffer to the texture, or via “render to texture”.  Render to 
texture requires that two textures be kept for each state 
field, and swapped after each update. 

5.1 Interior and Boundary Computation 
In a typical CPU implementation of fluid simulation, the 
simulation domain is represented in an array.  Many 
simulation steps require different computations on the 
interior of the simulation domain than on its boundaries, so 
usually a single row of cells on the outside of the domain is 
reserved to store boundary values [Griebel, et al. 1998].  To 
perform a given simulation step, such an implementation 
will typically iterate over the domain using a set of nested 
loops, and then update the boundary values separately.  

Hardware simulation is very similar.  The SIMD nature 
of the fragment processor means that the render-pass idiom 
described above is equivalent to the nested-loops-over-an-
array idiom of CPU simulation.  The borders of a texture 
contain boundary values, and different computations (thus 
different fragment programs) must be executed on the 
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border and interior.  To implement this, we activate a 
boundary fragment program and render line primitives over 
the edges of the view port.  Then we activate an interior 
fragment program and render a quadrilateral that covers all 
but the outer single-pixel border.  This is illustrated in 
Figure 3. 

5.2 Flat 3D Textures 
Previous methods for 3D simulation on GPUs have used 3D 
textures or a stack of 2D textures to represent the grid 
[Harris, et al. 2002].  To apply a simulation operation to the 
grid – for example to compute the buoyancy force – the 
volume must be updated slice by slice.  At each slice, the 
operation is applied, and the texture for that slice is 
updated, requiring a texture copy or a context switch 
associated with render to texture.    

We instead represent our grids using what we call a 
“flat” 3D texture.  A flat 3D texture is actually a 2D texture 
that contains the tiled slices of a 3D volume, as shown in 
Figure 4.  In the figure, the dark grey borders represent the 
boundary cells of each slice, and the light grey boxes in the 
lower left and upper right represent the boundary slices of 
the volume along the slicing axis.  Updating a flat 3D 
texture is much like the 2D texture update described in the 
previous section.  We render the interior of each slice (the 
colored squares)  as a quad primitive, and we render the 
boundaries using line primitives.  One fragment program is 
used for all of the interior quad primitives, and another is 
used for the boundary lines and the two “end cap” (lower 
left and upper right) quads. 

The advantage of true 3D textures over flat 3D textures is 
that addressing them is easy, since the GPU supports it.  
With flat 3D textures, however, we must convert the R 
texture coordinate into a 2D offset in order to do a texture 
lookup.  We do this in our fragment programs.  In practice, 
we precompute a 1D lookup texture that contains the offsets 
for each slice, and use this as an indirection table indexed 
by the Z coordinate. 

Flat 3D textures can be updated in a single render pass – 
only one texture update is required for the entire volume.  
This means that a 3D simulation can be implemented in the 
same number of passes (ignoring changes in the 
computation itself) as an equivalent 2D simulation.  We 
find that flat 3D textures provide a performance advantage 
over true 3D textures on current hardware.  While the 
amount of data copied or updated is the same, we find that 
the total slice update overhead is much greater for true 3D 

textures.  Also, flat 3D textures provide a quick, 
inexpensive way to preview the results of a 3D simulation, 
since they can be easily rendered as a 2D image.  

5.3 Vectorized Iterative Solvers 
Iterative solution of the Poisson equation for pressure is one 
of the most expensive operations in our numerical cloud 
simulation.  For simulation on the GPU, the choice of 
solver is limited by the inability of fragment programs to 
both read and write the same memory in the same pass.  
This rules out Gauss-Seidel and Successive Over-relaxation 
(SOR), which have been used in many previous graphics 
applications of fluid simulation.  We have, however, 
implemented several solvers and conducted an investigation 
to determine the most efficient of these given the 
constraints of graphics hardware.  The results are given in 
Table 1. 

Our Jacobi solver stores pressure as a single-channel 
floating point texture.  The Jacobi fragment program also 
takes a divergence texture as input, and computes an 
updated pressure  value as output for each fragment by 
sampling neighboring pressure values and subtracting the 
input divergence.  After this single pass the output texture is 
used as input for the next iteration of the solver. 

Red-Black Gauss-Seidel is a variation on Jacobi that 
splits the cells into two sets such that new red cell values 
only depend on black cell inputs, and vice versa (see Figure 
5).  All the red values can be updated using only the old 
black values, and then the black values can be updated 
using the new red values.  Using the more recent red values 
for half of the texel updates improves the convergence rate.   

To implement Red-Black efficiently we pack four 
pressure values into a single RGBA texel, as shown in 
Figure 5.   This allows us to reduce the overall number of 
texture lookups required for each half-pass of Red-Black.  
Without packing, the Red pass would require 5 texture 
lookups per pressure update  (corresponding to the 5 cells 
of a 5-point discrete Laplacian) in 2D, and 7 lookups in 3D.   
By packing pressure in a vectorized format the same 5 or 7 
texture lookups enable us to update 4 pressure values 
instead of just one, as can been seen in Figure 5.  With the 5 
samples shown the 4 pressure values in gi,j can be updated.  
This is a significant savings; however, we incur extra 
overhead since the Black cells must be explicitly passed 
through on a Red pass and vice versa, so that both Red and 
Black are written every pass, and we also incur the 
overhead of two rendering passes for one solver iteration.  

Figure 3: Updating a state field involves rendering a 
quad for the interior and a line for each border.  
Different fragment programs are applied to interior and 
border fragments. 

Figure 4: Flat 3D textures tile the slices of a 3D volume 
onto a 2D texture.  This allows all slices of the volume to 
be updated in a single rendering pass. 
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Still, Red-Black converges faster than a basic Jacobi solver 
given a fixed time budget. 

But the same vectorization technique used to accelerate 
the Red-Black solver can also be used to accelerate the 
Jacobi solver.  With vectorization, two full Jacobi iterations 
take less time than a full Red-Black iteration, and give 
better convergence.  The result is that vectorized Jacobi 
gives the best convergence under a fixed time budget of any 
of the hardware solvers we have tested (See Table 1). 

6  Interactive Applications 
Cloud simulation is a very computationally intensive 
process, and is therefore usually done offline.  But 
simulations of phenomena such as clouds have the potential 
to provide rich dynamic content for interactive applications, 
so one of our goals in this work has been to create a 
simulation that will work well online. 

As a test of this, we have integrated our cloud simulation 
into our SkyWorks cloud rendering engine [Harris and 
Lastra 2001].  SkyWorks was designed to render scenes full 
of static clouds very fast.  It precomputes the illumination 
of the clouds, and then uses this illumination to render the 
clouds at run time.  To amortize the cost of rendering the 
clouds, it uses dynamically generated impostors [Schaufler 
1995]. 

6.1 Simulation Amortization 
In order to incorporate dynamically simulated 3D clouds 
into existing 3D applications such as SkyWorks, the per-
frame simulation cost must be small enough that it does not 
interfere with the application.  If we were to perform a 
complete simulation time step every frame, our 
application's frame rate would drop below the frame rate of 
the cloud simulation.  As an example, with a volume of 
resolution 643, we simulate at under four iterations per 
second.  This is not an acceptable frame rate for a flight 
simulator. 

To avoid this problem, we have built into our simulation 
system a method for automatically dividing the work of a 
simulation time step over multiple frames.  This is fairly 
straightforward to do with a GPU simulation because each 
operation is a render pass.  We have instrumented our 
simulator with the ability to measure the time taken by any 
render pass.  Every so often (usually just at startup and at 
the user's request) we run a complete simulation step with 
these timers active, and we record the time for each step.  
Then, in each frame of the application, the application 
budgets a certain amount of time for the simulation, and the 
simulator attempts to stay as close to that budget as 
possible. 

We have found that this technique makes a tremendous 
difference in the performance of our application.  We can 
fly around and through dynamic clouds at 40-80 frames per 
second while the simulation updates 1-5 times per second.  
Since our simulation time step can be set at a few seconds, 
we can have clouds that update in approximately "real 
time". 

Still, this system is not perfect, because it is very difficult 
to accurately time an operation in the graphics pipeline.  In 
order to get the best interactivity, we must be sure the 
simulator rarely goes over budget.  To do this, we try to get 
worst case timings for each operation by forcing the 
pipeline to flush before we stop the timer.  But this is not 
realistic, because under normal conditions (i.e. without 
forced flushes) there is more parallelism in the GPU.  
Therefore, a better method – perhaps with hardware support 
– of timing GPU operations would be useful. 

7  Cloud Rendering 
To render simulated clouds in SkyWorks, we convert the 
simulation’s current cloud water texture into a true 3D 
texture, which is then used to render the cloud for multiple 
frames.  We found that rendering directly from the flat 3D 
texture is too expensive, because of the added cost of the 
fragment program required to read the texture with 3D 
coordinates.  Since a simulation time step does not 
complete every frame anyway, we find that the conversion 
is overall much faster.  Also, the generation of the 3D 
texture (which is performed entirely on the GPU) is 
included in the simulation amortization, so that it doesn't 
affect our interactive frame rates.  We use the impostors 
provided by SkyWorks as-is (one impostor for the entire 
simulation grid), and found that the rendering speed 
advantage impostors provide for static clouds transfers well 

Poisson 
Solver 

Convergence 
per msec1 Convergence2 Time3 

(msec) 

Jacobi 2D 0.50 0.078 45.9 
Red-Black 

2D 0.85 0.124 45.3 

Vectorized 
Jacobi 2D 1.0 0.079 17.3 

Jacobi 3D N/C N/C 110† 

Vectorized 
Jacobi 3D N/C N/C 49.0 

1Normalized convergence per millisecond achieved with a 17 ms 
time budget. 2Relative convergence after 100 iterations.  3Time 
for execution of 100 iterations. †Estimated from register usage, 
program length, and fragment count for 3D Jacobi program. 

Table 1: A comparison of the convergence rates of 
various iterative solvers running on the GPU.  All grids 
were 128x128 or 32x32x16.  ("N/C" = "not computed".) 

Figure 5: We implement efficient iterative solvers by 
packing multiple scalar values into each texel.  The cross 
pattern demonstrates the sampling for vectorized Jacobi 
and Red-Black iteration. 
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to our dynamic clouds, since the clouds remain static for 
several frames at a time. 

7.1 Cloud Illumination 
To create realistic images of clouds, we must account for 
the complex nature of their interaction with light.  Light 
that reaches your eyes from a cloud has been scattered 
many times by the tiny water droplets in the cloud.  This is 
what gives clouds their soft, diffuse appearance.  A full 
simulation of multiple scattering requires the solution of a 
double-integral equation.  However, cloud water droplets 
scatter most strongly in the direction of travel of the 
incident light, or forward direction.  [Harris and Lastra 
2001] used this fact to derive a computationally 
inexpensive model that simulates multiple forward 
scattering.  Their algorithm, based on the shadowing 
algorithm of [Dobashi, et al. 2000], applied the 
approximation to precompute illumination of cloud 
particles using frame buffer blending and read back. 

We use an extension of this algorithm that works with 
3D textures instead of particles.  Like the previous 
algorithms, it is a two pass algorithm that computes a 3D 
illumination texture, and then uses this illumination texture 
to illuminate a 3D density texture.  The algorithm works as 
follows. 

Tightly fit a bounding box to the bounding box of the 
cloud density volume, oriented so that the Z axis of the 
bounding box is aligned with the forward light direction.  
Traverse the light volume, rendering N slices, where N is 
the resolution of the light texture.  Set the blending function 
and polygon colors as in [Harris and Lastra 2001] to 
compute shadowing and forward light scattering.  Enable 
automatic texture coordinate generation so that rendering a 
quad along the current slice will be correctly textured by 
the 3D cloud density texture.  At each slice, render a quad, 
and then copy the resulting frame buffer to the current slice 
of the 3D illumination texture.  The result, shown in  the 
middle of Figure 6, is a 3D texture that represents 
volumetric illumination.   

At run time, we render slices oriented to the viewer.  We 
bind the cloud density texture and the light texture to the 
first two texture units, and we again use automatic texture 
coordinate generation.  Finally, we set the texture matrix on 
the second texture to be the transformation matrix from the 
cloud space (usually world space) into the oriented light 
volume's space.  This transform is determined by the fitting 
of the oriented bounding box.  By using this texture matrix, 

we transform texture coordinates for each lookup into the 
correct position in the light volume, so that the cloud is 
correctly illuminated. 

For efficiency, we typically use a light volume texture 
that is one half the resolution of the cloud density volume.  
This allows us to very quickly create the light volume.  Our 
algorithm is an alternative implementation of traditional 
two-pass volumetric illumination algorithm based on 
[Kajiya and Von Herzen 1984].  It is similar to the "shadow 
buffer" algorithm of [Levoy 1988].  The advantage is that 
since our light volume is oriented along the light direction, 
it is fast to compute in hardware.  The disadvantage is that 
part of the resolution is wasted unless the light direction 
matches one of the cloud volume's axes, as can be seen in 
Figure 7. 

8  Results and Conclusion 
We have demonstrated a method for fast, physically-based 
cloud simulation implemented on programmable graphics 
hardware.  Our GPU simulation system provides fast 
simulation of clouds on larger volumes than has been seen 
previously.  On a volume of resolution 323, we achieve an 
update rate of approximately 27 iterations per second on an 
NVIDIA GeForce FX Ultra.  Flat 3D textures improve the 
scalability of the computation, since the number of render 
passes for simulations of any resolution is the same.  Thus, 
a volume of resolution 643 updates at about 3.6 iterations 
per second, which means that the efficiency is increasing 
with the increase in volume.  With traditional 3D textures, 
we doubt we would see the same scalability in our 
simulations. 

Our simulation amortization technique has proven very 
valuable for visualizing the results of our simulations.  
Combined with our efficient illumination algorithm and the 
use of impostors for rendering, this technique allows the 
user to move around and through clouds like the ones in 
Figure 1, Figure 8 and Figure 9 at high frame rates (the 
grid resolutions in both figures were 64x32x32 and 
64x32x64).  

The advection portion of our simulation is one of its 
bottlenecks.  This is especially true in the case of staggered 
grid advection.  We have made a comparison of the 
performance of advection under various conditions, shown 
in Table 2.  We found that in large 3D staggered grid 
simulations, the advection could cause a large, regular jump 
in our smooth frame rate when performing the amortized 
simulation.  We solved this problem by splitting advection 
into three less expensive passes (one for each dimension).  
This increase in granularity enables a more balanced per-

Figure 6: An unlit density volume (left), an oriented light 
volume (middle), and the resulting illuminated volume 
(right). 

Figure 7: We use a 3D texture oriented along the light 
direction to compute and cloud illumination in hardware. 
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frame simulation cost, since the velocity computation can 
be spread over more than one frame.  Because velocity is 
stored in three separate color channels of a texture, we use 
the color mask functionality of OpenGL to ensure that each 
advection pass writes only a single color channel.  This 
way, only one texture update is necessary for all three 
passes.  Splitting advection has another advantage.  
Fragment program performance on GeForce FX decreases 
with the number of registers used.  Therefore even though 
the total instruction count for the split version is slightly 
higher, the shorter fragment programs execute faster since 
they use fewer registers.  Therefore the total cost of split 
advection is lower, as shown in Table 2. 

In the future, we hope to enhance the performance of our 
simulation.  One optimization we have not taken much 
advantage of is the use of textures as lookup tables.  While 
fragment programs provide computational flexibility, this 
comes at a cost.  Lookup tables are important just as they 
are in CPU computation.  Also, as our simulation grid sizes 
increase, we think that a more sophisticated linear solver 
will be needed to achieve good convergence.  The multigrid 
method shows promise for accurate large-grid simulation 
on the GPU [Bolz, et al. 2003;Goodnight, et al. 2003] . 

We also plan to improve the visual results of our 
simulation. One major improvement will come from 
animation blending.  Currently, the low simulation update 
rate causes visual “popping”.  Linear interpolation of the 
current and next time step will help.  A possibly better idea 
would be to use the current velocity field to perform a 
partial advection at each time step.  This advection would 
use the collocated grid advection operator for efficiency, 
since the goal would be visual smoothing, not accuracy. 
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Figure 9: A view of simulated clouds from the ground.  (The far clouds are part of the sky texture.) 


